Notice
Please check this publication out in your library.

Confirm

Polyurethane


Ads by Google
Back To Bed - #1 Reviewed Mattress Store in U.S. Read Reviews of a Store Near You! - www.backtobed.com/mattress-stores
Icynene Chicago - Find an Icynene Licensed Dealer, Up to 50% Lower Energy Bills - www.activefoamspecialists.com
Lean Manufacturing - Classes, workshops and consulting Sign-up for one-day LEAN 101 class - dbr.dmacc.edu
Urethane Chemicals - Discounted urethane raw materials Discounted prepolymers and systems - www.EverChem.com




Ads by Google
High Temperature Epoxy
Succinic Anhydres, Nadic Methyl
Anhydrides - Get a Quote Now.
broadview-tech.com

Expert Fortune Telling
As Seen on Good Morning America
New Member Promo-Call 855.215.4617
www.PsychicSource.com

Record Storage Chicago
Secure storage. NO removal fees and
guaranteed accurate delivery.
www.eastbankrecords.com

Lean Manufacturing Report
Implementing Lean Manufacturing.
Download Free Report from SME Today
www.discoversme.org/freereport

Polyurethanes are linear polymers that have a molecular backbone containing carbamate groups (-NHCO2). These groups, called urethane, are produced through a chemical reaction between a diisocyanate and a polyol. First developed in late 1930s, polyurethanes are some of the most versatile polymers. They are used in building insulation, surface coatings, adhesives, solid plastics, and athletic apparel.

Background

Polyurethanes, also known as polycarbamates, belong to a larger class of compounds called polymers. Polymers are macromolecules made up of smaller, repeating units known as monomers. Generally, they consist of a primary long-chain backbone molecule with attached side groups. Polyurethanes are characterized by carbamate groups (-NHCO 2 ) in their molecular backbone.

Synthetic polymers, like polyurethane, are produced by reacting monomers in a reaction vessel. In order to produce polyurethane, a step—also known as condensation—reaction is performed. In this type of chemical reaction, the monomers that are present contain reacting end groups. Specifically, a diisocyanate (OCN-R-NCO) is reacted with a diol (HO-R-OH). The first step of this reaction results in the chemical linking of the two molecules leaving a reactive alcohol (OH) on one side and a reactive isocyanate (NCO) on the other. These groups react further with other monomers to form a larger, longer molecule. This is a rapid process which yields high molecular weight materials even at room temperature. Polyurethanes that have important commercial uses typically contain other functional groups in the molecule including esters, ethers, amides, or urea groups.

History

Polyurethane chemistry was first studied by the German chemist, Friedrich Bayer in 1937. He produced early prototypes by reacting toluene diisocyanate reacted with dihydric alcohols. From this work one of the first crystalline polyurethane fibers, Perlon U, was developed. The development of elastic polyurethanes began as a program to find a replacement for rubber during the days of World War II. In 1940, the first polyurethane elastomers were produced. These compounds gave millable gums that could be used as an adequate alternative to rubber. When scientists found that polyurethanes could be made into fine threads, they were combined with nylon to make more lightweight, stretchable garments.

In 1953, the first commercial production of a flexible polyurethane foam was begun in the United States. This material was useful for foam insulation. In 1956, more flexible, less expensive foams were introduced. During the late 1950s, moldable polyurethanes were produced. Over the years, improved polyurethane polymers have been developed including Spandex fibers, polyurethane coatings, and thermoplastic elastomers.

Raw Materials

A variety of raw materials are used to produce polyurethanes. These include monomers, prepolymers, stabilizers which protect the integrity of the polymer, and colorants.

Isocyanates

One of the key reactive materials required to produce polyurethanes are diisocyanates. These compounds are characterized by a (NCO) group, which are highly reactive alcohols. The most widely used isocyanates employed in polyurethane production are toluene diisocyanate (TDI) and polymeric isocyanate (PMDI). TDI is produced by chemically adding nitrogen groups on toluene, reacting these with hydrogen to produce a diamine, and separating the undesired isomers. PMDI is derived by a phosgenation reaction of aniline-formaldehyde polyamines. In addition to these isocyanates, higher end materials are also available. These include materials like 1,5-naphthalene diisocyanate and bitolylene diisocyanate. These more expensive materials can provide higher melting, harder segments in polyurethane elastomers.

Polyols

The other reacting species required to produce polyurethanes are compounds that contain multiple alcohol groups (OH), called polyols. Materials often used for this purpose are polyether polyols, which are polymers formed from cyclic ethers. They are typically produced through an alkylene oxide polymerization process. They are high molecular weight polymers that have a wide range of viscosity. Various polyether polyols that are used include polyethylene glycol, polypropylene glycol, and polytetramethylene glycol. These materials are generally utilized when the desired polyurethane is going to be used to make flexible foams or thermoset elastomers.

Polyester polyols may also be used as a reacting species in the production of polyurethanes. They can be obtained as a byproduct of terephthalic acid production. They are typically based on saturated aromatic carboxylic acids and diols. Branched polyester polyols are used for polyurethane foams and coatings. Polyester polyols were the most used reacting species for the production of polyurethanes. However, polyether polyols became significantly less expense and have supplanted polyester polyols.

Additives

Some polyurethane materials can be vulnerable to damage from heat, light, atmospheric contaminants, and chlorine. For this reason, stabilizers are added to protect the polymer. One type of stabilizer that protects against light degradation is a UV screener called hydroxybenzotriazole. To protect against oxidation reactions, antioxidants are used. Various antioxidants are available such as monomeric and polymeric hindered phenols. Compounds which inhibit discoloration caused by atmospheric pollutants may also be added. These are typically materials with tertiary amine functionality that can interact with the oxides of nitrogen in air pollution. For certain applications, antimildew additives are added to the polyurethane product.

After the polymers are formed and removed from the reaction vessels, they are naturally white. Therefore, colorants may be added to change their aesthetic appearance. Common covalent compounds for polyurethane fibers are dispersed and acid dyes.

Design

Polyurethanes can be produced in four different forms including elastomers, coatings, flexible foams, and cross-linked foams. Elastomers are materials that can be stretched but will eventually return to their original shape. They are useful in applications that require strength, flexibility, abrasion resistance, and shock absorbing qualities. Thermoplastic polyurethane elastomers can be molded and shaped into different parts. This makes them useful as base materials for automobile parts, ski boots, roller skate wheels, cable jackets, and other mechanical goods. When these elastomers are spun into fibers they produce a flexible material called spandex. Spandex is used to make sock tops, bras, support hose, swimsuits, and other athletic apparel.

Polyurethane coatings show a resistance to solvent degradation and have good impact resistance. These coatings are used on surfaces that require abrasion resistance, flexibility, fast curing, adhesion, and chemical resistance such as bowling alleys and dance floors. Water based polyurethane coatings are used for painting aircraft, automobiles, and other industrial equipment.

Flexible foams are the largest market for polyurethanes. These materials have high impact strength and are used for making most furniture cushioning. They also provide the material for mattresses and seat cushions in higher priced furniture. Semiflexible

A diagram depicting the manufacturing processes used to create rigid polyurethane foam insulation.
A diagram depicting the manufacturing processes used to create rigid polyurethane foam insulation.
polyurethane foams are used to make car dashboard and door liners. Other uses include carpet underlay, packaging, sponges, squeegees, and interior padding. Rigid, or cross-linked, polyurethane foams are used to produce insulation in the form of boards or laminate. Laminates are used extensively in the commercial roofing industry. Buildings are often sprayed with a polyurethane foam.

The Manufacturing Process

While polyurethane polymers are used for a vast array of applications, their production method can be broken into three distinct phases. First, the bulk polymer product is made. Next, the polymer is exposed to various processing steps. Finally, the polymer is transformed into its final product and shipped. This production process can be illustrated by looking at the continuous production of polyurethane foams.

Polymer reactions

  • 1 At the start of polyurethane foam production, the reacting raw materials are held as liquids in large, stainless steel tanks. These tanks are equipped with agitators to keep the materials fluid. A metering device is attached to the tanks so that the appropriate amount of reactive material can be pumped out. A typical ratio of polyol to diisocyanate is 1:2. Since the ratio of the component materials produces polymers with varying characteristics, it is strictly controlled.
  • 2 The reacting materials are passed through a heat exchanger as they are pumped into pipes. The exchanger adjusts the temperature to the reactive level. Inside the pipes, the polymerization reaction occurs. By the time the polymerizing liquid gets to the end of the pipe, the polyurethane is already formed. On one end of the pipe is a dispensing head for the polymer.

Processing

  • 3 The dispensing head is hooked up to the processing line. For the production of rigid polyurethane foam insulation, a roll of baking paper is spooled at the start of the processing line. This paper is moved along a conveyor and brought under the dispensing head.
  • 4 As the paper passes under, polyurethane is blown onto it. As the polymer is dispensed, it is mixed with carbon dioxide which causes it to expand. It continues to rise as it moves along the conveyor. (The sheet of polyurethane is known as a bun because it "rises" like dough.)
  • 5 After the expansion reaction begins, a second top layer of paper is rolled on. Additionally, side papers may also be rolled into the process. Each layer of paper contains the polyurethane foam giving it shape. The rigid foam is passed through a series of panels that control the width and height of the foam bun. As they travel through this section of the production line, they are typically dried.
  • 6 At the end of the production line, the foam insulation is cut with an automatic saw to the desired length. The foam bun is then conveyored to the final processing steps that include packaging, stacking, and shipping.

Quality Control

To ensure the quality of the polyurethane material, producers monitor the product during all phases of production. These inspections begin with an evaluation of the incoming raw materials by quality control chemists. They test various chemical and physical characteristics using established methods. Some of characteristics that are tested include the pH, specific gravity, and viscosity or thickness. Additionally, appearance, color, and odor may also be examined. Manufacturers have found that only by strictly controlling the quality at the start of production can they ensure that a consistent finished product will be achieved.

After production, the polyurethane product is tested. Polyurethane coating products are evaluated in the same way the initial raw materials are checked. Also, characteristics like dry time, film thickness, and hardness are tested. Polyurethane fibers are tested for things such as elasticity, resilience, and absorbency. Polyurethane foams are checked to ensure they have the proper density, resistance, and flexibility.

The Future

The quality of polyurethanes has steadily improved since they were first developed. Research in a variety of areas should continue to help make superior materials. For example, scientists have found that by changing the starting prepolymers they can develop polyurethane fibers which have even better stretching characteristics. Other characteristics can be modified by incorporating different fillers, using better catalysts, and modifying the prepolymer ratios.

In addition to the polymers themselves, the future will likely bring improvements in the production process resulting in faster, less expensive, and more environmentally friendly polyurethanes. A recent trend in polyurethane production is the replacement of toluene diisocyanates with less-volatile polymeric isocyanates. Also, manufacturers have tried to eliminate chlorinated fluorocarbon blowing agents which are often used in the production of polyurethane foams.

Where to Learn More

Books

Kirk-Othmer Encyclopedia of Chemical Technology. John Wiley & Sons, 1997.

Oertel, G. Polyurethane Handbook. Second ed. Munich: Carl Hanser Publishers, 1993.

Seymour, Raymond, and Charles Carraher. Polymer Chemistry. New York: Marcel Dekker,1992.

Ulrich, H. The Chemistry and Technology of Isocyanates. New York: John Wiley & Sons, 1996.

Perry Romanowski


Ads by Google
Process Flowcharts - Make Process Flow Charts Fast See Examples. Free Download! - www.SmartDraw.com
Cast Polyurethane Parts - Custom Polyurethane and Rubber Molded, Cast, or Machined parts. - www.polymercomponents.com

User Contributions:

Report this comment as inappropriate
May 12, 2010 @ 9:21 pm
What exactly is the chemical makeup of A B Foam does it contain petroleum oil? Would it be fair to say it is the same chemicals used in the manufacturing of polyurethane foam used in mattresses? I would like to see a video of how polyurethane foam sheets are made for mattresses. Many people would like to see how they make memory foam mattresses. Can you explain the difference between the chemical make up of polyurethane foam and memory foam? Thank you for your reply. Joyce@MountainAirOrganicBeds.com
Report this comment as inappropriate
Jul 26, 2010 @ 2:02 am
which monomer should we use for the production of high density rigid polyurethane foam?
Report this comment as inappropriate
Sep 5, 2011 @ 10:22 pm
Sir, Please, explain how the atmospheric pressure is involving while producing polyurethane foams.
william
Report this comment as inappropriate
May 12, 2012 @ 8:20 pm
Is the production of wheels (rebonding forklift wheels to be specific), same processes as the poduction of polyurethane foams? If so, what are the raw materials?

Comment about this article, ask questions, or add new information about this topic:

CAPTCHA


Polyurethane forum