Petrol engine/gasoline engine
Compression ratio
Speed and efficiency
Applications
Design
Engine efficiency
Working cycles
Cylinder arrangement
Cooling
Ignition
Power measurement kilowatts (metric) or horsepower)
Dynamometer
Labeled Diagram of Gasoline Car Engine & Terminology


The purpose of a gasoline car engine is to convert gasoline into motion so that your car can move. Currently the easiest way to create motion from gasoline is to burn the gasoline inside an engine. Therefore, a car engine is an internal combustion engine -- combustion takes place internally. Two things to note:

There are different kinds of internal combustion engines. Diesel engines are one form and gas turbine engines are another. See also the articles on HEMI engines, rotary engines and two-stroke engines. Each has its own advantages and disadvantages.

There is such a thing as an external combustion engine. A steam engine in old-fashioned trains and steam boats is the best example of an external combustion engine. The fuel (coal, wood, oil, whatever) in a steam engine burns outside the engine to create steam, and the steam creates motion inside the engine. Internal combustion is a lot more efficient (takes less fuel per mile) than external combustion, plus an internal combustion engine is a lot smaller than an equivalent external combustion engine. This explains why we don't see any cars from Ford and GM using steam engines.

Almost all cars currently use what is called a four-stroke combustion cycle to convert gasoline into motion. The four-stroke approach is also known as the Otto cycle, The four strokes are illustrated in Figure 1. They are:
Intake stroke
Compression stroke
Combustion stroke
Exhaust stroke

1. The piston starts at the top, the intake valve opens, and the piston moves down to let the engine take in a cylinder-full of air and gasoline. This is the intake stroke. Only the tiniest drop of gasoline needs to be mixed into the air for this to work. (Part 1 of the figure)

2. Then the piston moves back up to compress this fuel/air mixture. Compression makes the explosion more powerful. (Part 2 of the figure)

3. When the piston reaches the top of its stroke, the spark plug emits a spark to ignite the gasoline. The gasoline charge in the cylinder explodes, driving the piston down. (Part 3 of the figure)

4. Once the piston hits the bottom of its stroke, the exhaust valve opens and the exhaust leaves the cylinder to go out the tailpipe. (Part 4 of the figure)

Now the engine is ready for the next cycle, so it intakes another charge of air and gas.

Notice that the motion that comes out of an internal combustion engine is rotational, while the motion produced by a potato cannon is linear (straight line). In an engine the linear motion of the pistons is converted into rotational motion by the crankshaft. The rotational motion is nice because we plan to turn (rotate) the car's wheels with it anyway.

Basic Engine Parts

The core of the engine is the cylinder, with the piston moving up and down inside the cylinder. The engine described above has one cylinder. That is typical of most lawn mowers, but most cars have more than one cylinder (four, six and eight cylinders are common). In a multi-cylinder engine, the cylinders usually are arranged in one of three ways: inline, V or flat (also known as horizontally opposed or boxer), as shown in the following figures.

In an inline engine, the cylinders are arranged in a line in a single bank. Figure 2. Inline - The cylinders are arranged in a line in a single bank.

In a V engine, cylinders are arranged in two banks set at an angle to one another.

Figure 3. V - The cylinders are arranged in two banks set at an angle to one another.

In a flat engine, the cylinders are arranged in two banks on opposite sides of the engine.

Figure 4. Flat - The cylinders are arranged in two banks on opposite sides of the engine.

Different configurations have different advantages and disadvantages in terms of smoothness, manufacturing cost and shape characteristics. These advantages and disadvantages make them more suitable for certain vehicles.

Let's look at some key engine parts in more detail.

Spark plug

The spark plug supplies the spark that ignites the air/fuel mixture so that combustion can occur. The spark must happen at just the right moment for things to work properly.

Valves

The intake and exhaust valves open at the proper time to let in air and fuel and to let out exhaust. Note that both valves are closed during compression and combustion so that the combustion chamber is sealed.

Piston

A piston is a cylindrical piece of metal that moves up and down inside the cylinder.

Piston rings

Piston rings provide a sliding seal between the outer edge of the piston and the inner edge of the cylinder. The rings serve two purposes:

They prevent the fuel/air mixture and exhaust in the combustion chamber from leaking into the sump during compression and combustion.

They keep oil in the sump from leaking into the combustion area, where it would be burned and lost.

Most cars that "burn oil" and have to have a quart added every 1,000 miles are burning it because the engine is old and the rings no longer seal things properly.

Connecting rod

The connecting rod connects the piston to the crankshaft. It can rotate at both ends so that its angle can change as the piston moves and the crankshaft rotates.

Crankshaft

The crankshaft turns the piston's up and down motion into circular motion just like a crank on a jack-in-the-box does.

Sump

The sump surrounds the crankshaft. It contains some amount of oil, which collects in the bottom of the sump (the oil pan).

Next, we'll learn what can go wrong with engines.

Engine Problems

So you go out one morning and your engine will turn over but it won't start... What could be wrong? Now that you know how an engine works, you can understand the basic things that can keep an engine from running. Three fundamental things can happen: a bad fuel mix, lack of compression or lack of spark. Beyond that, thousands of minor things can create problems, but these are the "big three." Based on the simple engine we have been discussing, here is a quick rundown on how these problems affect your engine:

Bad fuel mix - A bad fuel mix can occur in several ways:

You are out of gas, so the engine is getting air but no fuel.
The air intake might be clogged, so there is fuel but not enough air.
The fuel system might be supplying too much or too little fuel to the mix, meaning that combustion does not occur properly.
There might be an impurity in the fuel (like water in your gas tank) that makes the fuel not burn.

Lack of compression - If the charge of air and fuel cannot be compressed properly, the combustion process will not work like it should. Lack of compression might occur for these reasons:

Your piston rings are worn (allowing air/fuel to leak past the piston during compression).
The intake or exhaust valves are not sealing properly, again allowing a leak during compression.
There is a hole in the cylinder.

The most common "hole" in a cylinder occurs where the top of the cylinder (holding the valves and spark plug and also known as the cylinder head) attaches to the cylinder itself. Generally, the cylinder and the cylinder head bolt together with a thin gasket pressed between them to ensure a good seal. If the gasket breaks down, small holes develop between the cylinder and the cylinder head, and these holes cause leaks.

Lack of spark - The spark might be nonexistent or weak for a number of reasons:

If your spark plug or the wire leading to it is worn out, the spark will be weak.
If the wire is cut or missing, or if the system that sends a spark down the wire is not working properly, there will be no spark.
If the spark occurs either too early or too late in the cycle (i.e. if the ignition timing is off), the fuel will not ignite at the right time, and this can cause all sorts of problems.

Many other things can go wrong. For example:
If the battery is dead, you cannot turn over the engine to start it.
If the bearings that allow the crankshaft to turn freely are worn out, the crankshaft cannot turn so the engine cannot run.
If the valves do not open and close at the right time or at all, air cannot get in and exhaust cannot get out, so the engine cannot run.
If someone sticks a potato up your tailpipe, exhaust cannot exit the cylinder so the engine will not run.
If you run out of oil, the piston cannot move up and down freely in the cylinder, and the engine will seize.

In a properly running engine, all of these factors are within tolerance.

As you can see, an engine has a number of systems that help it do its job of converting fuel into motion. We'll look at the different subsystems used in engines in the next few sections.

Engine Valve Train and Ignition Systems

Most engine subsystems can be implemented using different technologies, and better technologies can improve the performance of the engine. Let's look at all of the different subsystems used in modern engines, beginning with the valve train.

The valve train consists of the valves and a mechanism that opens and closes them. The opening and closing system is called a camshaft. The camshaft has lobes on it that move the valves up and down, as shown in Figure 5.

The engine's camshaft opens and closes its valves.

Figure 5. The camshaft

Most modern engines have what are called overhead cams. This means that the camshaft is located above the valves, as you see in Figure 5. The cams on the shaft activate the valves directly or through a very short linkage. Older engines used a camshaft located in the sump near the crankshaft. Rods linked the cam below to valve lifters above the valves. This approach has more moving parts and also causes more lag between the cam's activation of the valve and the valve's subsequent motion. A timing belt or timing chain links the crankshaft to the camshaft so that the valves are in sync with the pistons. The camshaft is geared to turn at one-half the rate of the crankshaft. Many high-performance engines have four valves per cylinder (two for intake, two for exhaust), and this arrangement requires two camshafts per bank of cylinders, hence the phrase "dual overhead cams." See How Camshafts Work for details.

The ignition system (Figure 6) produces a high-voltage electrical charge and transmits it to the spark plugs via ignition wires. The charge first flows to a distributor, which you can easily find under the hood of most cars. The distributor has one wire going in the center and four, six, or eight wires (depending on the number of cylinders) coming out of it. These ignition wires send the charge to each spark plug. The engine is timed so that only one cylinder receives a spark from the distributor at a time. This approach provides maximum smoothness. See How Automobile Ignition Systems Work for more details.

Engine Cooling, Air-intake and Starting Systems

The cooling system in most cars consists of the radiator and water pump. Water circulates through passages around the cylinders and then travels through the radiator to cool it off. In a few cars (most notably Volkswagen Beetles), as well as most motorcycles and lawn mowers, the engine is air-cooled instead (You can tell an air-cooled engine by the fins adorning the outside of each cylinder to help dissipate heat.). Air-cooling makes the engine lighter but hotter, generally decreasing engine life and overall performance. See How Car Cooling Systems Work for details.

A car's cooling system consists of a radiator and a water pump.

Diagram of a cooling system showing how all the plumbing is connected

So now you know how and why your engine stays cool. But why is air circulation so important? Most cars are normally aspirated, which means that air flows through an air filter and directly into the cylinders. High-performance engines are either turbocharged or supercharged, which means that air coming into the engine is first pressurized (so that more air/fuel mixture can be squeezed into each cylinder) to increase performance. The amount of pressurization is called boost. A turbocharger uses a small turbine attached to the exhaust pipe to spin a compressing turbine in the incoming air stream. A supercharger is attached directly to the engine to spin the compressor.

An engine's turbocharger can increase its performance by pressurizing incoming air.

See How Turbochargers Work for details.

Increasing your engine's performance is great, but what exactly happens when you turn the key to start it? The starting system consists of an electric starter motor and a starter solenoid. When you turn the ignition key, the starter motor spins the engine a few revolutions so that the combustion process can start. It takes a powerful motor to spin a cold engine. The starter motor must overcome:

All of the internal friction caused by the piston rings
The compression pressure of any cylinder(s) that happens to be in the compression stroke
The energy needed to open and close valves with the camshaft
All of the "other" things directly attached to the engine, like the water pump, oil pump, alternator, etc.

Because so much energy is needed and because a car uses a 12-volt electrical system, hundreds of amps of electricity must flow into the starter motor. The starter solenoid is essentially a large electronic switch that can handle that much current. When you turn the ignition key, it activates the solenoid to power the motor.

Next, we'll look at the engine subsystems that maintain what goes in (oil and fuel) and what comes out (exhaust and emissions).

Engine Lubrication, Fuel, Exhaust and Electrical Systems When it comes to day-to-day car maintenance, your first concern is probably the amount of gas in your car. How does the gas that you put in power the cylinders? The engine's fuel system pumps gas from the gas tank and mixes it with air so that the proper air/fuel mixture can flow into the cylinders. Fuel is delivered in three common ways: carburetion, port fuel injection and direct fuel injection.

In carburetion, a device called a carburetor mixes gas into air as the air flows into the engine.

In a fuel-injected engine, the right amount of fuel is injected individually into each cylinder either right above the intake valve (port fuel injection) or directly into the cylinder (direct fuel injection).

See How Fuel Injection Systems Work for more details.

Oil also plays an important part. The lubrication system makes sure that every moving part in the engine gets oil so that it can move easily. The two main parts needing oil are the pistons (so they can slide easily in their cylinders) and any bearings that allow things like the crankshaft and camshafts to rotate freely. In most cars, oil is sucked out of the oil pan by the oil pump, run through the oil filter to remove any grit, and then squirted under high pressure onto bearings and the cylinder walls. The oil then trickles down into the sump, where it is collected again and the cycle repeats.

Now that you know about some of the stuff that you put in your car, let's look at some of the stuff that comes out of it. The exhaust system includes the exhaust pipe and the muffler. Without a muffler, what you would hear is the sound of thousands of small explosions coming out your tailpipe. A muffler dampens the sound. The exhaust system also includes a catalytic converter. See How Catalytic Converters Work for details.

The emission control system in modern cars consists of a catalytic converter, a collection of sensors and actuators, and a computer to monitor and adjust everything. For example, the catalytic converter uses a catalyst and oxygen to burn off any unused fuel and certain other chemicals in the exhaust. An oxygen sensor in the exhaust stream makes sure there is enough oxygen available for the catalyst to work and adjusts things if necessary.

Besides gas, what else powers your car? The electrical system consists of a battery and an alternator. The alternator is connected to the engine by a belt and generates electricity to recharge the battery. The battery makes 12-volt power available to everything in the car needing electricity (the ignition system, radio, headlights, windshield wipers, power windows and seats, computers, etc.) through the vehicle's wiring.

Now that you know all about the main engine subsystems, let's look at ways that you can boost engine performance.

Producing More Engine Power

Horsepower

For a complete explanation of what horsepower is and what horsepower means, check out How Horsepower Works.

Using all of this information, you can begin to see that there are lots of different ways to make an engine perform better. Car manufacturers are constantly playing with all of the following variables to make an engine more powerful and/or more fuel efficient.

Increase displacement - More displacement means more power because you can burn more gas during each revolution of the engine. You can increase displacement by making the cylinders bigger or by adding more cylinders. Twelve cylinders seems to be the practical limit.

Increase the compression ratio - Higher compression ratios produce more power, up to a point. The more you compress the air/fuel mixture, however, the more likely it is to spontaneously burst into flame (before the spark plug ignites it). Higher-octane gasolines prevent this sort of early combustion. That is why high-performance cars generally need high-octane gasoline -- their engines are using higher compression ratios to get more power.

Stuff more into each cylinder - If you can cram more air (and therefore fuel) into a cylinder of a given size, you can get more power from the cylinder (in the same way that you would by increasing the size of the cylinder). Turbochargers and superchargers pressurize the incoming air to effectively cram more air into a cylinder. See How Turbochargers Work for details.

Cool the incoming air - Compressing air raises its temperature. However, you would like to have the coolest air possible in the cylinder because the hotter the air is, the less it will expand when combustion takes place. Therefore, many turbocharged and supercharged cars have an intercooler. An intercooler is a special radiator through which the compressed air passes to cool it off before it enters the cylinder. See How Car Cooling Systems Work for details.

Let air come in more easily - As a piston moves down in the intake stroke, air resistance can rob power from the engine. Air resistance can be lessened dramatically by putting two intake valves in each cylinder. Some newer cars are also using polished intake manifolds to eliminate air resistance there. Bigger air filters can also improve air flow.

Let exhaust exit more easily - If air resistance makes it hard for exhaust to exit a cylinder, it robs the engine of power. Air resistance can be lessened by adding a second exhaust valve to each cylinder (a car with two intake and two exhaust valves has four valves per cylinder, which improves performance -- when you hear a car ad tell you the car has four cylinders and 16 valves, what the ad is saying is that the engine has four valves per cylinder). If the exhaust pipe is too small or the muffler has a lot of air resistance, this can cause back-pressure, which has the same effect. High-performance exhaust systems use headers, big tail pipes and free-flowing mufflers to eliminate back-pressure in the exhaust system. When you hear that a car has "dual exhaust," the goal is to improve the flow of exhaust by having two exhaust pipes instead of one.

Make everything lighter - Lightweight parts help the engine perform better. Each time a piston changes direction, it uses up energy to stop the travel in one direction and start it in another. The lighter the piston, the less energy it takes.

Inject the fuel - Fuel injection allows very precise metering of fuel to each cylinder. This improves performance and fuel economy. See How Fuel Injection Systems Work for details.

A car engine's job is to:
convert fuel into heat
convert fuel into motion
convert fuel into exhaust

There's a lot of heat in a car's engine -- and a lot of exhaust coming out of it -- but these are byproducts of the engine's true purpose. An engine has to use fuel to create motion to move the tires.

A car uses a four-stroke engine. The four strokes are:
intake, compression, ignition and exhaust
injection, rotation, ignition and exhaust
injection, carburetion, rotation and exhaust

In the intake step, a cylinder gets some fuel and air to burn. Then, it compresses the fuel to make the ignition step -- the explosion -- more powerful. In the last step, the cylinder releases its exhaust. This is also known as the Otto cycle.

A device that works on the same principle as a car engine is:
a nuclear submarine
a jackhammer
a spud gun

In a both spud gun and a car engine, you ignite a small amount of fuel, releasing a large amount of energy. (And it's equally unwise to get in front of a moving car or a loaded spud gun.)

A crankshaft's job in an engine is to:
deliver fuel to the cylinders
change linear motion into rotational motion
keep cylinder heads in place

When gasoline ignites in a cylinder, the piston moves in a straight line. Your wheels, on the other hand, need to turn. The piston moves a connecting rod, which turns the crankshaft, producing the rotational motion.

A car's engine uses a series of small, regular explosions to run. The car doesn't move in stops and starts because:
The muffler dampens the explosions.
The crankshaft stores energy and releases it slowly.
There are multiple cylinders, and the explosion in each one happens at a different time.

A car's muffler does cut down on noise, but an engine runs smoothly because each cylinder fires at a different time. If one starts to misfire, your drive down a smooth highway will become a lot rockier.

There are three basic failures that can happen in an engine: bad fuel mix, lack of compression and:
lack of exhaust
lack of water
lack of spark

Correct
lack of spark
Lots of things can go wrong under the hood, but the big three in the engine involve fuel, compression and fire .

In a car engine's cylinder, valves let fuel in and exhaust out. The ______ moves these valves. camshaft
timing belt
distributor

Correct!
A camshaft is a rotating rod that uses a series of lobes to open and close the valves. Most modern engines have overhead cams -- the camshaft is directly above the valves.

A turbocharger is:
a set of gears that makes the wheels turn faster
a turbine that compresses the air traveling into the engine
an injector that delivers fuel to the engine faster

Turbochargers and superchargers are both air compression systems. They pressurize the air moving into the engine, increasing the engine's power.

When you turn the key to a car, the starter motor:
sends electricity to the spark plugs, starting ignition sends electricity to the fuel pump, forcing the car to start spins the engine a few revolutions, starting the combustion process

Correct!
The starter motor has a big job -- it has to overcome friction, cold weather and other factors to get your engine stared. If it fails, nothing happens in the engine when you turn the key.

Power to run a car's radio, CD player, headlights and windshield wipers comes from the:
battery
motor
engine

Correct!
A large battery powers most of a car's accessories. An alternator uses the engine's power to keep the battery charged.

Bolt-on accessories that make it easier for your engine to push exhaust gases out of the cylinders are called:
headers
footers
mufflers

Headers improve engine performance by making the exhaust stroke less power intensive.

If you're using an exhaust header with a four-cylinder engine, how many exhaust pipes will you have?
one
two
four
Correct!
Exhaust headers eliminate back pressure by giving each cylinder its own exhaust pipe.

Why do properly inflated tires improve fuel efficiency?
they decrease the force of friction
they counteract the force of gravity
they're lighter
Correct!
Since well-inflated tires have less contact with the road, they encounter less friction and the engine doesn't have to work as hard to move the car.

During the exhaust stroke, many engines lose power through:
exhaust manifolds
back pressure
exhaust headers

Engines tend to waste power during the exhaust stroke when they come up against the resistance of back pressure.

Nitrous oxide improves engine performance by providing more what? nitrogen
oxygen
hydrogen

Correct!
When nitrous oxide is heated, it splits into nitrogen and oxygen, making more oxygen available to the engine during combustion.

What other benefits does nitrous oxide provide? a cleaner-burning fuel
a cooling effect
a quieter performance

Correct!
When it vaporizes, nitrous oxide provides a cooling effect on the intake air, which increases the air's density and provides even more oxygen inside the cylinder.

Why do cars normally carry only a few minutes worth of nitrous oxide?
it's difficult to find
it's expensive
it's fairly bulky

Correct!
Due to the bulk of nitrous oxide, it takes up a significant amount of space even when compressed into a liquid. Drivers tend to carry only a small amount and use it selectively by pushing a button.

How much faster can the turbine in a turbocharger spin when compared to a regular car engine?
10 times faster
20 times faster
30 times faster

Correct Correct!
Using the exhaust flow from the engine, turbines in a turbocharger can spin the air about 30 times faster than a regular car engine can -- at speeds of up to 150,000 rpm.

How many valves per cylinder do dual overhead camshafts have?
two
four
six

Dual overhead camshafts (DOHC) produce more power and can run at higher speeds since they allow an engine to have four valves per cylinder.

Three fundamental causes can keep your engine from running. Which of the following is not one of them?
bad fuel
lack of compression
worn-out ball bearings

Correct!

Although thousands of minor things can create engine problems, the big three include a bad fuel mix, a lack of compression and a lack of spark.

Have you ever opened the hood of your car and wondered what was going on in there?

How are 4-cylinder and V6 engines different?

The purpose of a gasoline car engine is to convert gasoline into motion so that your car can move. Currently the easiest way to create motion from gasoline is to burn the gasoline inside an engine. Therefore, a car engine is an internal combustion engine -- combustion takes place internally. Two things to note:

* There are different kinds of internal combustion engines. Diesel engines are one form and gas turbine engines are another. See also the articles on HEMI engines, rotary engines and two-stroke engines. Each has its own advantages and disadvantages.

* There is such a thing as an external combustion engine. A steam engine in old-fashioned trains and steam boats is the best example of an external combustion engine. The fuel (coal, wood, oil, whatever) in a steam engine burns outside the engine to create steam, and the steam creates motion inside the engine. Internal combustion is a lot more efficient (takes less fuel per mile) than external combustion, plus an internal combustion engine is a lot smaller than an equivalent external combustion engine.

Internal Combustion

The ­principle behind any reciprocating internal combustion engine: If you put a tiny amount of high-energy fuel (like gasoline) in a small, enclosed space and ignite it, an incredible amount of energy is released in the form of expanding gas.

Almost all cars currently use what is called a four-stroke combustion cycle to convert gasoline into motion. The four-stroke approach is also known as the Otto cycle, in honor of Nikolaus Otto, who invented it in 1867. The four strokes are illustrated in Figure 1. They are:
* Intake stroke
* Compression stroke
* Combustion stroke
* Exhaust stroke

1. The piston starts at the top, the intake valve opens, and the piston moves down to let the engine take in a cylinder-full of air and gasoline. This is the intake stroke. Only the tiniest drop of gasoline needs to be mixed into the air for this to work. (Part 1 of the figure)

2. Then the piston moves back up to compress this fuel/air mixture. Compression makes the explosion more powerful. (Part 2 of the figure)

3. When the piston reaches the top of its stroke, the spark plug emits a spark to ignite the gasoline. The gasoline charge in the cylinder explodes, driving the piston down. (Part 3 of the figure)

4. Once the piston hits the bottom of its stroke, the exhaust valve opens and the exhaust leaves the cylinder to go out the tailpipe. (Part 4 of the figure)

Now the engine is ready for the next cycle, so it intakes another charge of air and gas.

Notice that the motion that comes out of an internal combustion engine is rotational, while the motion produced by a potato cannon is linear (straight line). In an engine the linear motion of the pistons is converted into rotational motion by the crankshaft. The rotational motion is nice because we plan to turn (rotate) the car's wheels with it anyway.

Now let's look at all the parts that work together to make this happen, starting with the cylinders.

Basic Engine Parts

The core of the engine is the cylinder, with the piston moving up and down inside the cylinder. The engine described above has one cylinder. That is typical of most lawn mowers, but most cars have more than one cylinder (four, six and eight cylinders are common). In a multi-cylinder engine, the cylinders usually are arranged in one of three ways: inline, V or flat (also known as horizontally opposed or boxer), as shown in the following figures.

In an inline engine, the cylinders are arranged in a line in a single bank.

Different configurations have different advantages and disadvantages in terms of smoothness, manufacturing cost and shape characteristics. These advantages and disadvantages make them more suitable for certain vehicles.

Let's look at some key engine parts in more detail.

Spark plug

The spark plug supplies the spark that ignites the air/fuel mixture so that combustion can occur. The spark must happen at just the right moment for things to work properly.

Valves

The intake and exhaust valves open at the proper time to let in air and fuel and to let out exhaust. Note that both valves are closed during compression and combustion so that the combustion chamber is sealed.

Piston

A piston is a cylindrical piece of metal that moves up and down inside the cylinder.

Piston rings

Piston rings provide a sliding seal between the outer edge of the piston and the inner edge of the cylinder. The rings serve two purposes:

* They prevent the fuel/air mixture and exhaust in the combustion chamber from leaking into the sump during compression and combustion.

* They keep oil in the sump from leaking into the combustion area, where it would be burned and lost.

Most cars that "burn oil" and have to have a quart added every 1,000 miles are burning it because the engine is old and the rings no longer seal things properly.

Connecting rod

The connecting rod connects the piston to the crankshaft. It can rotate at both ends so that its angle can change as the piston moves and the crankshaft rotates.

Crankshaft

The crankshaft turns the piston's up and down motion into circular motion just like a crank on a jack-in-the-box does.

Sump

The sump surrounds the crankshaft. It contains some amount of oil, which collects in the bottom of the sump (the oil pan).

Engine Problems

So you go out one morning and your engine will turn over but it won't start... What could be wrong? Now that you know how an engine works, you can understand the basic things that can keep an engine from running. Three fundamental things can happen: a bad fuel mix, lack of compression or lack of spark. Beyond that, thousands of minor things can create problems, but these are the "big three." Based on the simple engine we have been discussing, here is a quick rundown on how these problems affect your engine:

Bad fuel mix - A bad fuel mix can occur in several ways:

* You are out of gas, so the engine is getting air but no fuel.
* The air intake might be clogged, so there is fuel but not enough air.
* The fuel system might be supplying too much or too little fuel to the mix, meaning that combustion does not occur properly.
* There might be an impurity in the fuel (like water in your gas tank) that makes the fuel not burn.

Lack of compression - If the charge of air and fuel cannot be compressed properly, the combustion process will not work like it should. Lack of compression might occur for these reasons:

* Your piston rings are worn (allowing air/fuel to leak past the piston during compression).
* The intake or exhaust valves are not sealing properly, again allowing a leak during compression.
* There is a hole in the cylinder.
The most common "hole" in a cylinder occurs where the top of the cylinder (holding the valves and spark plug and also known as the cylinder head) attaches to the cylinder itself. Generally, the cylinder and the cylinder head bolt together with a thin gasket pressed between them to ensure a good seal. If the gasket breaks down, small holes develop between the cylinder and the cylinder head, and these holes cause leaks.

Doing regular engine maintenance can help you avoid future repairs.

Lack of spark - The spark might be nonexistent or weak for a number of reasons:

* If your spark plug or the wire leading to it is worn out, the spark will be weak.
* If the wire is cut or missing, or if the system that sends a spark down the wire is not working properly, there will be no spark.
* If the spark occurs either too early or too late in the cycle (i.e. if the ignition timing is off), the fuel will not ignite at the right time, and this can cause all sorts of problems.

Many other things can go wrong. For example:

* If the battery is dead, you cannot turn over the engine to start it.
* If the bearings that allow the crankshaft to turn freely are worn out, the crankshaft cannot turn so the engine cannot run.
* If the valves do not open and close at the right time or at all, air cannot get in and exhaust cannot get out, so the engine cannot run.
* If someone sticks a potato up your tailpipe, exhaust cannot exit the cylinder so the engine will not run.
* If you run out of oil, the piston cannot move up and down freely in the cylinder, and the engine will seize.

In a properly running engine, all of these factors are within tolerance.

As you can see, an engine has a number of systems that help it do its job of converting fuel into motion. We'll look at the different subsystems used in engines in the next few sections.

Engine Valve Train and Ignition Systems

Most engine subsystems can be implemented using different technologies, and better technologies can improve the performance of the engine. Let's look at all of the different subsystems used in modern engines, beginning with the valve train.

The valve train consists of the valves and a mechanism that opens and closes them. The opening and closing system is called a camshaft. The camshaft has lobes on it that move the valves up and down, as shown in Figure 5.

The engine's camshaft opens and closes its valves. Figure 5. The camshaft

Most modern engines have what are called overhead cams. This means that the camshaft is located above the valves, as you see in Figure 5. The cams on the shaft activate the valves directly or through a very short linkage. Older engines used a camshaft located in the sump near the crankshaft. Rods linked the cam below to valve lifters above the valves. This approach has more moving parts and also causes more lag between the cam's activation of the valve and the valve's subsequent motion. A timing belt or timing chain links the crankshaft to the camshaft so that the valves are in sync with the pistons. The camshaft is geared to turn at one-half the rate of the crankshaft. Many high-performance engines have four valves per cylinder (two for intake, two for exhaust), and this arrangement requires two camshafts per bank of cylinders, hence the phrase "dual overhead cams." See How Camshafts Work for details.

The ignition system (Figure 6) produces a high-voltage electrical charge and transmits it to the spark plugs via ignition wires. The charge first flows to a distributor, which you can easily find under the hood of most cars. The distributor has one wire going in the center and four, six, or eight wires (depending on the number of cylinders) coming out of it. These ignition wires send the charge to each spark plug. The engine is timed so that only one cylinder receives a spark from the distributor at a time. This approach provides maximum smoothness. See How Automobile Ignition Systems Work for more details.

Engine Cooling, Air-intake and Starting Systems

The cooling system in most cars consists of the radiator and water pump. Water circulates through passages around the cylinders and then travels through the radiator to cool it off. In a few cars (most notably Volkswagen Beetles), as well as most motorcycles and lawn mowers, the engine is air-cooled instead (You can tell an air-cooled engine by the fins adorning the outside of each cylinder to help dissipate heat.). Air-cooling makes the engine lighter but hotter, generally decreasing engine life and overall performance. See How Car Cooling Systems Work for details.

So now you know how and why your engine stays cool. But why is air circulation so important? Most cars are normally aspirated, which means that air flows through an air filter and directly into the cylinders. High-performance engines are either turbocharged or supercharged, which means that air coming into the engine is first pressurized (so that more air/fuel mixture can be squeezed into each cylinder) to increase performance. The amount of pressurization is called boost. A turbocharger uses a small turbine attached to the exhaust pipe to spin a compressing turbine in the incoming air stream. A supercharger is attached directly to the engine to spin the compressor.

Increasing your engine's performance is great, but what exactly happens when you turn the key to start it? The starting system consists of an electric starter motor and a starter solenoid. When you turn the ignition key, the starter motor spins the engine a few revolutions so that the combustion process can start. It takes a powerful motor to spin a cold engine. The starter motor must overcome:

* All of the internal friction caused by the piston rings
* The compression pressure of any cylinder(s) that happens to be in the compression stroke
* The energy needed to open and close valves with the camshaft
* All of the "other" things directly attached to the engine, like the water pump, oil pump, alternator, etc.

Because so much energy is needed and because a car uses a 12-volt electrical system, hundreds of amps of electricity must flow into the starter motor. The starter solenoid is essentially a large electronic switch that can handle that much current. When you turn the ignition key, it activates the solenoid to power the motor.

Engine Lubrication, Fuel, Exhaust and Electrical Systems

When it comes to day-to-day car maintenance, your first concern is probably the amount of gas in your car. How does the gas that you put in power the cylinders? The engine's fuel system pumps gas from the gas tank and mixes it with air so that the proper air/fuel mixture can flow into the cylinders. Fuel is delivered in three common ways: carburetion, port fuel injection and direct fuel injection.

* In carburetion, a device called a carburetor mixes gas into air as the air flows into the engine.

* In a fuel-injected engine, the right amount of fuel is injected individually into each cylinder either right above the intake valve (port fuel injection) or directly into the cylinder (direct fuel injection). See How Fuel Injection Systems Work for more details.

Oil also plays an important part. The lubrication system makes sure that every moving part in the engine gets oil so that it can move easily. The two main parts needing oil are the pistons (so they can slide easily in their cylinders) and any bearings that allow things like the crankshaft and camshafts to rotate freely. In most cars, oil is sucked out of the oil pan by the oil pump, run through the oil filter to remove any grit, and then squirted under high pressure onto bearings and the cylinder walls. The oil then trickles down into the sump, where it is collected again and the cycle repeats.

Now that you know about some of the stuff that you put in your car, let's look at some of the stuff that comes out of it. The exhaust system includes the exhaust pipe and the muffler. Without a muffler, what you would hear is the sound of thousands of small explosions coming out your tailpipe. A muffler dampens the sound. The exhaust system also includes a catalytic converter. See How Catalytic Converters Work for details.

The emission control system in modern cars consists of a catalytic converter, a collection of sensors and actuators, and a computer to monitor and adjust everything. For example, the catalytic converter uses a catalyst and oxygen to burn off any unused fuel and certain other chemicals in the exhaust. An oxygen sensor in the exhaust stream makes sure there is enough oxygen available for the catalyst to work and adjusts things if necessary.

Besides gas, what else powers your car? The electrical system consists of a battery and an alternator. The alternator is connected to the engine by a belt and generates electricity to recharge the battery. The battery makes 12-volt power available to everything in the car needing electricity (the ignition system, radio, headlights, windshield wipers, power windows and seats, computers, etc.) through the vehicle's wiring.

Now that you know all about the main engine subsystems, let's look at ways that you can boost engine performance.

Producing More Engine Power

Horsepower

For a complete explanation of what horsepower is and what horsepower means, check out How Horsepower Works.

Using all of this information, you can begin to see that there are lots of different ways to make an engine perform better. Car manufacturers are constantly playing with all of the following variables to make an engine more powerful and/or more fuel efficient.

Increase displacement - More displacement means more power because you can burn more gas during each revolution of the engine. You can increase displacement by making the cylinders bigger or by adding more cylinders. Twelve cylinders seems to be the practical limit.

Increase the compression ratio - Higher compression ratios produce more power, up to a point. The more you compress the air/fuel mixture, however, the more likely it is to spontaneously burst into flame (before the spark plug ignites it). Higher-octane gasolines prevent this sort of early combustion. That is why high-performance cars generally need high-octane gasoline -- their engines are using higher compression ratios to get more power.

Stuff more into each cylinder - If you can cram more air (and therefore fuel) into a cylinder of a given size, you can get more power from the cylinder (in the same way that you would by increasing the size of the cylinder). Turbochargers and superchargers pressurize the incoming air to effectively cram more air into a cylinder. See How Turbochargers Work for details.

Cool the incoming air - Compressing air raises its temperature. However, you would like to have the coolest air possible in the cylinder because the hotter the air is, the less it will expand when combustion takes place. Therefore, many turbocharged and supercharged cars have an intercooler. An intercooler is a special radiator through which the compressed air passes to cool it off before it enters the cylinder. See How Car Cooling Systems Work for details.

Let air come in more easily - As a piston moves down in the intake stroke, air resistance can rob power from the engine. Air resistance can be lessened dramatically by putting two intake valves in each cylinder. Some newer cars are also using polished intake manifolds to eliminate air resistance there. Bigger air filters can also improve air flow.

Let exhaust exit more easily - If air resistance makes it hard for exhaust to exit a cylinder, it robs the engine of power. Air resistance can be lessened by adding a second exhaust valve to each cylinder (a car with two intake and two exhaust valves has four valves per cylinder, which improves performance -- when you hear a car ad tell you the car has four cylinders and 16 valves, what the ad is saying is that the engine has four valves per cylinder). If the exhaust pipe is too small or the muffler has a lot of air resistance, this can cause back-pressure, which has the same effect. High-performance exhaust systems use headers, big tail pipes and free-flowing mufflers to eliminate back-pressure in the exhaust system. When you hear that a car has "dual exhaust," the goal is to improve the flow of exhaust by having two exhaust pipes instead of one.

Make everything lighter - Lightweight parts help the engine perform better. Each time a piston changes direction, it uses up energy to stop the travel in one direction and start it in another. The lighter the piston, the less energy it takes.

Inject the fuel - Fuel injection allows very precise metering of fuel to each cylinder. This improves performance and fuel economy. See How Fuel Injection Systems Work for details.

How are 4-cylinder and V6 engines different?
The number of cylinders that an engine contains is an important factor in the overall performance of the engine. Each cylinder contains a piston that pumps inside of it and those pistons connect to and turn the crankshaft. The more pistons there are pumping, the more combustive events are taking place during any given moment. That means that more power can be generated in less time.

4-Cylinder engines commonly come in “straight” or “inline” configurations while 6-cylinder engines are usually configured in the more compact “V” shape, and thus are referred to as V6 engines. V6 engines have been the engine of choice for American automakers because they’re powerful and quiet but still light and compact enough to fit into most car designs.

Historically, American auto consumers turned their noses up at 4-cylinder engines, believing them to be slow, weak, unbalanced and short on acceleration. However, when Japanese auto makers, such as Honda and Toyota, began installing highly-efficient 4-cylinder engines in their cars in the 1980s and 90s, Americans found a new appreciation for the compact engine. Even though Japanese models, such as the Toyota Camry, began quickly outselling comparable American models, U.S. automakers, believing that American drivers were more concerned with power and performance, continued to produce cars with V6 engines. Today, with rising gas prices and greater public environmental awareness, Detroit seems to be reevaluating the 4-cylinder engine for its fuel efficiency and lower emissions.

As for the future of the V6, in recent years the disparity between 4-cylinder and V6 engines has lessened considerably. In order to keep up with the demand for high gas-mileage and lower emission levels, automakers have worked diligently to improve the overall performance of V6 engines. Many current V6 model Let exhaust exit more easily - If air resistance makes it hard for exhaust to exit a cylinder, it robs the engine of power. Air resistance can be lessened by adding a second exhaust valve to each cylinder (a car with two intake and two exhaust valves has four valves per cylinder, which improves performance -- when you hear a car ad tell you the car has four cylinders and 16 valves, what the ad is saying is that the engine has four valves per cylinder). If the exhaust pipe is too small or the muffler has a lot of air resistance, this can cause back-pressure, which has the same effect. High-performance exhaust systems use headers, big tail pipes and free-flowing mufflers to eliminate back-pressure in the exhaust system. When you hear that a car has "dual exhaust," the goal is to improve the flow of exhaust by having two exhaust pipes instead of one. Make everything lighter - Lightweight parts help the engine perform better. Each time a piston changes direction, it uses up energy to stop the travel in one direction and start it in another. The lighter the piston, the less energy it takes.

Inject the fuel - Fuel injection allows very precise metering of fuel to each cylinder. This improves performance and fuel economy. See How Fuel Injection Systems Work for details.

How are 4-cylinder and V6 engines different?
The number of cylinders that an engine contains is an important factor in the overall performance of the engine. Each cylinder contains a piston that pumps inside of it and those pistons connect to and turn the crankshaft. The more pistons there are pumping, the more combustive events are taking place during any given moment. That means that more power can be generated in less time. s come close to matching the gas-mileage and emissions standards of the smaller, 4-cylinder engines. So, with the performance and efficiency gaps between the two engines lessening, the decision to buy a 4-cylinder or V6 may just come down to cost.

* Why does my engine stall? * Why does the engine stall after replacing the battery? * Why is my engine running rough? * Why won't my engine crank over? * Why does my engine have low power output? * How an idle air controller works * Why does my engine hesitate? * How an engine works * How to check compression * How to retrieve trouble codes * How to test engine vacuum * How to test fuel delivery system * Engine cranks but wont start * Engine cranks excessively * Engine stalls * Engine vibration * Engine has excessive smoke * Rapid ticking sounds when engine is cranked * Engine has lean mixture codes * Engine idles high * Engine idles low * Engine has oil leak * Engine has coolant leak * Engine is making excessive noises * How to tune up your engine * How to jump start your engine * How to change engine oil and filter * How does a MAF mass air flow sensor work? * How to test an oxygen sensor * How does a timing belt work? * Car is making a chirping noise