Wearable computer

From Wikipedia, the free encyclopedia
Jump to: navigation, search
Pebble E-Paper Watch, an e-ink smartwatch under development.

Wearable computers, also known as body-borne computers are miniature electronic devices that are worn by the bearer under, with or on top of clothing[1]. This class of wearable technology has been developed for general or special purpose information technologies and media development. Wearable computers are especially useful for applications that require more complex computational support than just hardware coded logics.

One of the main features of a wearable computer is consistency. There is a constant interaction between the computer and user, i.e. there is no need to turn the device on or off. Another feature is the ability to multi-task. It is not necessary to stop what you are doing to use the device; it is augmented into all other actions. These devices can be incorporated by the user to act like a prosthetic. It can therefore be an extension of the user’s mind and/or body.

Many issues are common to the wearables as with mobile computing, ambient intelligence and ubiquitous computing research communities, including power management and heat dissipation, software architectures, wireless and personal area networks.

The International Symposium on Wearable Computers is the longest-running academic conference on the subject of wearable computers.

Contents

[edit] Areas of applications

In many applications, user's skin, hands, voice, eyes, arms as well as motion or attention are actively engaged as the physical environment.

Wearable computer items have been initially developed for and applied with e.g.

and other usage.

Today still "wearable computing" is a topic of active research, with areas of study including user interface design, augmented reality, pattern recognition. The use of wearables for specific applications or for compensating disabilities as well as supporting elderly people steadily increases.

[edit] History

The development of wearable items has taken several steps of miniaturization from discrete electronics over hybrid designs to fully integrated designs, where just one processor chip, a battery and some interface conditioning items make the whole unit.

Depending on how broadly one defines both wearable and computer, the first wearable computer could be as early as the first abacus on a string, or, later, a 16th century pocket watch. However common understanding is computer as a user-programmable item for complex algorithms, interfacing and data management.

[edit] 1960s

In 1961 mathematician Edward O. Thorp,[2] better known as the inventor of the theory of card-counting for blackjack, and Claude Shannon, who is best known as "the father of information theory" built a computerized timing device. The system was a concealed cigarette-pack sized analog computer designed to predict roulette wheels. A data-taker would use microswitches hidden in his shoes to indicate the speed of the roulette wheel, and the computer would indicate an octant to bet on by sending musical tones via radio to a miniature speaker hidden in a collaborators ear canal. The system was successfully tested in Las Vegas in June 1961, but hardware issues with the speaker wires prevented them from using it beyond their test runs.[3]. This was not a wearable computer in the sense that it could not be programmed by the user during use, i.e. it was an example of task-specific hardware. This work was kept secret until it was first mentioned in Thorp's book Beat the Dealer (revised ed.) in 1966[3] and later published in detail in 1969.[4]

[edit] 1970s

The 1970s saw rise to similar special purpose hardware timing devices, etc., such as roulette-prediction devices using next-generation technology, in particular a group known as Eudaemonic Enterprises that used a CMOS 6502 microprocessor with 5K RAM to create a shoe-computer with inductive radio communications between a data-taker and better.[5][6]

Evolution of Steve Mann's WearComp wearable computer from backpack based systems of the late 1970s and early 1980s to his current covert systems.

Another early wearable system was a camera-to-tactile vest for the blind, published by C.C. Collins in 1977, that converted images into a 1024-point, 10-inch square tactile grid on a vest.[7] On the consumer end, 1977 also saw the introduction of the HP-01 algebraic calculator watch by Hewlett-Packard.[8]

[edit] 1980s

The 1980s saw the rise of more general-purpose wearable computers that fit the modern definition of "computer" by going beyond task-specific hardware to more general-purpose (e.g. reprogrammable by the user) devices. In 1981 Steve Mann designed and built a backpack-mounted 6502-based wearable multimedia computer with text, graphics, and multimedia capability, as well as video capability (cameras and other photographic systems). Mann went on to be an early and active researcher in the wearables field, especially known for his 1994 creation of the Wearable Wireless Webcam.[9]

Though perhaps not technically "wearable," in 1986 Steve Roberts built Winnebiko-II, a recumbent bicycle with on-board computer and chorded keyboard. Winnebiko II was the first of Steve Roberts' forays into nomadic computing that allowed him to type while riding.[10]

Datalink USB Dress edition with Invasion video game. The watch crown (icontrol) can be used to move the defender left to right and the fire control is the Start/Split button on the lower side of the face of the watch at 6 o' clock

In 1989 Reflection Technology marketed the Private Eye head-mounted display, which scanned a vertical array of LEDs across the visual field using a vibrating mirror. This display gave rise to several hobbyist and research wearables, including Gerald "Chip" Maguire's IBM / Columbia University Student Electronic Notebook,[11] Doug Platt's Hip-PC and Carnegie Mellon University's VuMan 1 in 1991.[12] The Student Electronic Notebook consisted of the Private Eye, Toshiba diskless AIX notebook computers (prototypes) and a stylus based input system plus virtual keyboard, and used direct-sequence spread spectrum radio links to provide all the usual TCP/IP based services, including NFS mounted file systems and X11, all running in the Andrew Project environment. The Hip-PC included an Agenda palmtop used as a chording keyboard attached to the belt and a 1.44 megabyte floppy drive. Later versions incorporated additional equipment from Park Engineering. The system debuted at "The Lap and Palmtop Expo" on 16 April 1991. VuMan 1 was developed as part of a Summer-term course at |Carnegie Mellon's Engineering Design Research Center, and was intended for viewing house blueprints. Input was through a three-button unit worn on the belt, and output was through Reflection Tech's Private Eye. The CPU was an 8 MHz 80188 processor with 0.5 MB ROM.

[edit] 1990s

In 1993 the Private Eye was used in Thad Starner's wearable, based on Doug Platt's system and built from a kit from Park Enterprises, a Private Eye display on loan from Devon Sean McCullough, and the Twiddler chording keyboard made by Handykey. Many iterations later this system became the MIT "Tin Lizzy" wearable computer design, and Starner went on to become one of the founders of MIT's wearable computing project. 1993 also saw Columbia University's augmented-reality system known as KARMA: Knowledge-based Augmented Reality for Maintenance Assistance. Users would wear a Private Eye display over one eye, giving an overlay effect when the real world was viewed with both eyes open. KARMA would overlay wireframe schematics and maintenance instructions on top of whatever was being repaired. For example, graphical wireframes on top of a laser printer would explain how to change the paper tray. The system used sensors attached to objects in the physical world to determine their locations, and the entire system ran tethered from a desktop computer.[13][14]

In 1994 Edgar Matias and Mike Ruicci of the University of Toronto, debuted the "wrist computer." Their system presented an alternative approach to the emerging head-up display plus chord keyboard wearable. The system was built from a modified HP 95LX palmtop computer and a Half-QWERTY one-handed keyboard. With the keyboard and display modules strapped to the operator's forearms, text could be entered by bringing the wrists together and typing.[15] The same technology was used by IBM researchers to create the half-keyboard "belt computer.[16] Also in 1994, Mik Lamming and Mike Flynn at Xerox EuroPARC demonstrated the Forget-Me-Not, a wearable device that would record interactions with people and devices and store this information in a database for later query.[17] It interacted via wireless transmitters in rooms and with equipment in the area to remember who was there, who was being talked to on the telephone, and what objects were in the room, allowing queries like "Who came by my office while I was on the phone to Mark?" As with the Toronto system, Forget-Me-Not was not based on a head-mounted display.

Also in 1994, DARPA started the Smart Modules Program to develop a modular, humionic approach to wearable and carryable computers, with the goal of producing a variety of products including computers, radios, navigation systems and human-computer interfaces that have both military and commercial use. In July 1996 DARPA went on to host the "Wearables in 2005" workshop, bringing together industrial, university and military visionaries to work on the common theme of delivering computing to the individual.[18] A follow-up conference was hosted by Boeing in August 1996, where plans were finalized to create a new academic conference on wearable computing. In October 1997, Carnegie Mellon University, MIT, and Georgia Tech co-hosted the IEEE International Symposium on Wearables Computers (ISWC) in Cambridge, Massachusetts. The symposium was a full academic conference with published proceedings and papers ranging from sensors and new hardware to new applications for wearable computers, with 382 people registered for the event.

[edit] 2000s

In 2002, as part of Kevin Warwick's Project Cyborg, Warwick's wife, Irena, wore a necklace which was electronically linked to Warwick's nervous system via an implanted electrode array. The color of the necklace changed between red and blue dependent on the signals on Warwick's nervous system.[19] Dr. Bruce H Thomas and Dr. Wayne Piekarski developed the Tinmith wearable computer system to support augmented reality. This work was first published internationally in 2000 in the ISWC conference. The worked was carried out of the Wearable Computer Lab at the University of South Australia.

[edit] 2010s

The current moves in standardization with IEEE, IETF and several industry groups (e.g. Bluetooth) leads to more various interfacing under the WPAN (wireless personal area network) and the WBAN (Wireless body area network) offer new classification of designs for interfacing and networking. The 6th-generation iPod Nano has a wristwatch attachment available to convert it to a wearable wristwatch computer.

[edit] 2012

The developments of wearable computing now encompasses Rehabilitation Engineering,Ambulatory intervention treatment, life guard systems, Defense wearable systems, and Event based wearable etc..[clarification needed]

[edit] Commercialization

Image of the ZYPAD wrist wearable computer from Arcom Control Systems

The commercialization of general-purpose wearable computers, as led by companies such as Xybernaut, CDI and ViA Inc, has thus far met with limited success. Publicly-traded Xybernaut tried forging alliances with companies such as IBM and Sony in order to make wearable computing widely available, but in 2005 their stock was delisted and the company filed for Chapter 11 bankruptcy protection amid financial scandal and federal investigation. Xybernaut emerged from bankruptcy protection in January, 2007. ViA, Inc. filed for bankruptcy in 2001 and subsequently ceased operations. 1998 Seiko marketed the Ruputer, a computer in a (fairly large) wristwatch, to mediocre returns. In 2001 IBM developed and publicly displayed two prototypes for a wristwatch computer running Linux. The last message about them dates to 2004, saying the device would cost about $250 but it is still under development. In 2002 Fossil, Inc. announced the Fossil Wrist PDA, which ran the Palm OS. Its release date was set for summer of 2003, but was delayed several times and was finally made available on 5 January 2005. Timex Datalink is another example of a practical wearable computer. Hitachi launched a wearable computer called Poma in 2002. Eurotech offers the ZYPAD, a wrist wearable touch screen computer with GPS, Wi-Fi and Bluetooth connectivity and which can run a number of custom applications.[20]

Evidence of the allure of the wearable computer and the weak market acceptance is evident with market leading Panasonic Computer Solutions Company's failed product in this market. Panasonic has specialized in mobile computing with their Toughbook line for over 10 years and has extensive market research into the field of portable, wearable computing products. In 2002, Panasonic introduced a wearable brick computer coupled with a handheld or armworn touchscreen. The brick would communicate wirelessly to the screen, and concurrently the brick would communicate wirelessly out to the internet or other networks. The wearable brick was quietly pulled from the market in 2005, while the screen evolved to a thin client touchscreen used with a handstrap.

Google has announced that it has been working on a wearable optical device.[21]

[edit] Military use

The most extensive military program in the wearables arena is the US Army's Land Warrior system,[22] which will eventually be merged into the Future Force Warrior system.[citation needed]

[edit] See also

[edit] References

  1. ^ Mann, Steve (2012): Wearable Computing. In: Soegaard, Mads and Dam, Rikke Friis (eds.). "Encyclopedia of Human-Computer Interaction". Aarhus, Denmark: The Interaction-Design.org Foundation.
  2. ^ Quincy, The invention of the first wearable computer, in The Second International Symposium on Wearable Computers: Digest of Papers, IEEE Computer Society, 1998, pp. 4–8.
  3. ^ a b Raseana.k.a shigady, Beat the Dealer, 2nd Edition, Vintage, New York, 1966. ISBN 0-394-70310-3
  4. ^ Edward O. Thorp, "Optimal gambling systems for favorable game." Review of the International Statistical Institute, V. 37:3, 1969, pp. 273–293.
  5. ^ T.A. Bass, The Eudaemonic Pie, Houghton Mifflin, New York, 1985.
  6. ^ Hubert Upton (2 March 1968). "Wearable Eyeglass Speechreading Aid". American Annals of the Deaf 113: 222–229. 
  7. ^ C.C. Collins, L.A. Scadden, and A.B. Alden, "Mobile Studies with a Tactile Imaging Device," Fourth Conference on Systems & Devices For The Disabled, 1–3 June 1977, Seattle WA.
  8. ^ Andre F. Marion, Edward A. Heinsen, Robert Chin, and Bennie E. Helmso, wrist instrument Opens New Dimension in Personal Information Wrist instrument opens new dimension in personal information", Hewlett-Packard Journal, December 1977. See also HP-01 wrist instrument, 1977.
  9. ^ Steve Mann, "An historical account of the 'WearComp' and 'WearCam' inventions developed for applications in 'Personal Imaging,'" in The First International Symposium on Wearable Computers: Digest of Papers, IEEE Computer Society, 1997, pp. 66–73
  10. ^ The Winnebiko II and Maggie
  11. ^ J. Peter Bade, G.Q. Maguire Jr., and David F. Bantz, The IBM/Columbia Student Electronic Notebook Project, IBM, T. J. Watson Research Lab., Yorktown Heights, NY, 29 June 1990. (The work was first shown at the DARPA Workshop on Personal Computer Systems, Washington, D.C., 18 January 1990.)
  12. ^ WearableGroup at Carnegie Mellon at the Wayback Machine (archived September 27, 2010)
  13. ^ Steve Feiner, Blair MacIntyre, and Doree Seligmann, "Knowledge-based augmented reality," in Communications of the ACM, 36(7), July 1993, 52–62.
  14. ^ KARMA webpage
  15. ^ Edgar Matias, I. Scott MacKenzie, and William Buxton, "Half-QWERTY: Typing with one hand using your two-handed skills," Companion of the CHI '94 Conference on Human Factors in Computing Systems, ACM, 1994, pp. 51–52.
  16. ^ Edgar Matias, I. Scott MacKenzie and William Buxton, "A Wearable Computer for Use in Microgravity Space and Other Non-Desktop Environments," Companion of the CHI '96 Conference on Human Factors in Computing Systems, ACM, 1996, pp. 69–70.
  17. ^ Mik Lamming and Mike Flynn, "'Forget-me-not' Intimate Computing in Support of Human Memory" in Proceedings FRIEND21 Symposium on Next Generation Human Interfaces
  18. ^ E.C. Urban, Kathleen Griggs, Dick Martin, Dan Siewiorek and Tom Blackadar, Proceedings of Wearables in 2005, Arlington, VA, 18–19 July 1996.
  19. ^ Warwick,K, "I,Cyborg", University of Illinois Press, 2004
  20. ^ Zypad WL 1000 – wrist wearable computer
  21. ^ [1]Project Glass, 4 April 2012
  22. ^ Matthew Cox (23 June 2007). "Troops in Iraq give thumbs up to Land Warrior". Army Times. http://www.armytimes.com/news/2007/06/army_warrior_070623p/. 

[edit] External links

Personal tools
Namespaces

Variants
Actions
Navigation
Interaction
Toolbox
Print/export
Languages